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Abstract

Neuroblastoma (NB) is derived from intrinsic migratory

neural crest cells and has a high potential for distant

metastasis. Growing evidence has implicated chemo-

kine receptors, especially CXCR4, which normally

control immune and inflammatory cell migration, as

having important roles in tumor progression. In this

study, we investigated the expression of CXCR4 in

eight different NB cell lines and found that CXCR4 ex-

pression is dynamically regulated in NB and can be

modulated by different tissue stromata. In addition,

we demonstrate that IL-5 and IFN-; are released

from stromal cells and act as differential mediators for

CXCR4 expression. We also overexpressed CXCR4 in

two NB cell lines, NUB-7 and SK-N-BE(2), and studied

the role of CXCR4 in NB metastasis both in vitro and

in vivo. In vitro transwell invasion assay showed

that CXCR4 overexpression promoted NB cell migra-

tion preferentially toward a bone marrow stromal

cell–conditioned medium. Using an in vivo xenograft

model, CXCR4-overexpressing cells showed an in-

creased incidence of metastasis, most notably bone

marrow metastasis. Our studies reveal critical roles for

CXCR4 in NB metastasis and provide insights into the

regulatory mechanism of chemokine receptors in NB

and the importance of the tissue microenvironment

in modulating tumor cell behavior.
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Introduction

Chemokines represent a large superfamily of small peptides

that currently comprise 42 members in humans, which

recruit different cell populations by interacting with seven

transmembrane domain G-protein–coupled receptors. At

present, 18 chemokine receptors have been identified.

The primary role of chemokines/receptors is to regulate

the recruitment and trafficking of leukocyte subsets to

inflammatory sites through chemoattraction by activating

leukocyte integrins that bind to their adhesion receptors

on endothelial cells [1,2]. Chemokines are also involved in

neuronal cell migration and patterning [3]. Recent studies

suggest that many cancers express an extensive network of

chemokines and chemokine receptors [4,5]. These tumors are

characterized by dysregulated production of chemokines and

abnormal chemokine receptor expression. It has become evi-

dent that chemokines are able to couple to distinct signal-

ing pathways. Most chemokines share the ability to activate

G-protein–sensitive phospholipase C isoforms, resulting in

inositol-3,4,5-trisphosphate generation. Some of the chemo-

kines can also inhibit adenylate cyclase, activate MEK-1 and

ERK-1/2, and stimulate the tyrosine phosphorylation of focal

adhesion complex components [6–8].

Among chemokine receptors, CXCR4 is frequently studied

because it is expressed by most cancer types, including can-

cers of epithelial, mesenchymal, and hematopoietic origin [9].

For example, tumor cells from breast, prostate, pancreatic,

lung, and ovarian carcinomas, as well as glioblastomas, all ex-

press CXCR4 [10–15]. CXCL12 is the only known ligand for

CXCR4. It is found at sites of metastasis in breast and thyroid

cancers [16]. Considering their original role in the trafficking

of hematopoietic stem cells to the bone marrow [17], CXCR4

and CXCL12 (also known as SDF-1) are believed to be in-

volved in tumor growth and metastasis to the bone marrow.

Neuroblastoma (NB) is derived from embryonic neural crest

cells that form the peripheral sympathetic nervous system and

have a high potential to migrate. Metastatic NB has a high

mortality rate; thus, understanding the mechanism of how NB

tumor cells invade and metastasize will help in designing more

effective therapies to control the development and metastasis

of NB, and will further help to develop an animal model that

more faithfully resembles tumor metastasis in patients. So far,
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most studies on NB chemokine system have been performed

in vitro with the SK-N-SH cell line and its subclone SK-SY5Y.

Using flow cytometry, Geminder et al. [18] demonstrated the

expression of CXCR4 in eight different NB cell lines (SH-

SY5Y, CHP126, NHB, LAI55N, KELLY, SK-N-MC, NBL-WN,

and SK-N-SH). A recent report demonstrated that a higher

expression of CXCR4 was found in primary NB from pa-

tients with high-stage disease and in patients with bone and

bone marrow metastases. Clinical outcome in patients with

tumors expressing high levels of CXCR4 is significantly

worse than in patients with low CXCR4 tumor expression

[19]. All these studies support the hypothesis that specific

chemokines/receptors may play important roles in NB tumor

cell behavior, but more direct evidence is required to estab-

lish the role of chemokines/receptors in NB cell invasion and

metastasis. In this study, we screened chemokine/receptor

profiles in eight different NB cell lines and investigated the

roles of CXCR4 in NB tumor growth and progression using

mouse xenograft models. We also demonstrate the key role

of stromal cells in NB metastasis and a potential regulatory

mechanism for CXCR4 in NB.

Materials and Methods

Cells and Antibodies

Eight human NB cell lines were used in this study. SK-N-

BE(2), IMR-32, and SK-N-SH cells were obtained from

ATCC (Manassas, VA). LAN-5 cells were kindly provided

by Dr. Robert Seeger (Children’s Hospital Los Angeles, Los

Angeles, CA), NBL-S cells were from Dr. Susan Cohn (Chil-

dren’s Memorial Hospital, Chicago, IL), and SK-N-BE(1) cells

were from Dr. R. A. Ross (Fordham University, Bronx, NY).

The GOTO NB cell line was purchased from Riken Gene

Bank (Riken, Tsukuba, Ibaraki, Japan). All NB cell lines

were cultured at 37jC in 5%CO2 ina-MEM (Multicell;Wisent,

Inc., St. Bruno, Quebec, Canada) with 10% fetal bovine

serum (FBS; Life Technologies, Grand Island, NY), 50 U/ml

penicillin, and 50 mg/ml streptomycin (Gibco, Carlsbad, CA).

Antibodies to CXCR4 were purchased from Abcam (Cam-

bridge, MA) (ab2090) and R&D Systems (Minneapolis, MN;

clone 44708). The CXCR4 inhibitor AMD3100 was obtained

from Sigma (St. Louis, MO). CXCR4–pBABE was kindly

provided by Dr. Nathaniel Landau (The Salk Institute for

Biological Studies, La Jolla, CA). HFK293TV cells and retro-

viral plasmid 10A1 were generously provided by Dr. H. Vaziri

(Ontario Cancer Institute, Ontario, Canada).

Primary Culture of Stromal Cells

Stromal cells were established as primary cultures from

different organs of NOD/SCID mice, including the lung,

liver, bone, bone marrow, and adrenal gland. Briefly, after

sacrificing the mice, organs were dissected, and fat and

connective tissues were removed. Tissues were minced

with scissors into 1-mm cubes and digested in 15 ml of

phosphate-buffered saline (PBS) containing 75 mg of colla-

genase type II at 37jC, with rapid shaking. After digestion,

cells were washed once with 10 ml of a-MEM supplemented

with 10% FBS. The cells were plated and allowed to adhere

to flasks overnight. The medium was changed on the follow-

ing day and thereafter at 3- to 5-day intervals. The cultures

were continuously observed for growth of cells with mesen-

chymal morphology and were passaged thrice. Bone mar-

row stromal cells were isolated from bone marrow aspirates

from the femurs of NOD/SCID mice. To obtain conditioned

media, confluent stromal cells were cultured in a-MEM with

10% FBS for 48 hours, and the conditioned medium was

harvested, filtered, and used for the induction of tumor cells.

Enzyme-Linked Immunosorbent Assay (ELISA)

Themeasurement of SDF-1awas carried out using ELISA

kit (R&D Systems) according to the manufacturer’s instruc-

tions. Units of fluorescence activity were converted to actual

concentrations by a standard curve.

Reverse Transcription–Polymerase Chain

Reaction (RT-PCR)

Total cellular RNA was prepared by Qiagen RNeasy mini

kit (Qiagen, Valencia, CA). Residual DNA was eliminated

using the Qiagen RNase-Free DNase Set (Qiagen; cat.

no. 79254). Reverse transcription was carried out as de-

scribed by the manufacturer. DNA was amplified with the

specific primers listed in Table 1. Resulting PCR products

were subjected to electrophoresis in 2% agarose gels, and

resulting bands were recorded under UV light to identify

product specificity and reaction sensitivity.

Immunoblots

Aliquots of total protein extracts (50 mg) were run on 8%

sodium dodecyl sulfate–polyacrylamide gel electrophoresis

and transferred to nitrocellulose membranes. Immuno-

detection involved specific primary antibodies, appropriate

secondary antibodies conjugated to horseradish peroxi-

dase, and ECL plus chemiluminescence detection system

(Amersham Biosciences). Equal loading and transfer were

monitored by probing for a-tubulin or glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). Western blot analy-

ses were quantified using the ImageJ 1.32 software (National

Table 1. Primers Used By RT-PCR.

CXCR4

Forward 5V-TCATCTACACAGTCAACCTCTACA-3V

Reverse 5V-GAACACAACCACCCACAAGTCATT-3V

SDF-1

Forward 5V-CTTCAGACACTGAGGCTCCC-3V

Reverse 5V-AGGCAATCACAAACCCAGTC-3V

CCL2

Forward 5V-CAAACTGAAGCTCGCACTCTCGCC-3V

Reverse 5V-ATTCTTGGGTTGTGGAGTGAGTGTTCA-3V

CCL3

Forward 5V-GCTGACTACTTTGAGACGAGC-3V

Reverse 5V-CCAGTCCATAGAAGAGGTAGC-3V

CCR7

Forward 5V-TCCTTCTCATCAGCAAGCTGT-3V

Reverse 5V-GAGGCAGCCCAGGTCCTTGAAG-3V

GAPDH

Forward 5V-TGATGACATCAAGAAGGTGGTGAAG-3V

Reverse 5V-TCCTTGGAGGCCATGTGGGCCAT-3V
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Institutes of Health, Bethesda, MD) after densitometric scan-

ning of films.

Immunocytochemistry

NUB-7 cells were seeded on coverslips and incubated for

24 hours at 37jC. The coverslips with cells were then fixed

with 4% paraformaldehyde in PBS for 10 minutes, washed

with PBS, permeabilized in 1% Triton X-100 in PBS for 5 min-

utes, washed, and blocked with PBS with 1% bovine serum

albumin (BSA). For CXCR4 staining, cells were incu-

bated with mouse anti-human CXCR4 monoclonal antibody

diluted in 1% BSA–PBS (0.01 mg/ml) for 1 hour at room tem-

perature, rinsed thrice with PBS, and then incubated for

30 minutes with secondary antibody (cy3-conjugated

goat anti-mouse IgG; Molecular Probes, Eugene, OR) di-

luted in 1% BSA–PBS (1:100). After washing, coverslips

were mounted and examined under a Zeiss Axioskop fluo-

rescence microscope (Zeiss, Standort Göttingen, Germany).

Overexpression of CXCR4

For CXCR4 overexpression, HFK293TV cells were

infected with the combination of pBABE–CXCR4 and retro-

viral plasmid 10A1 using SAINT-MIX (Synvolux Therapeutics,

Amsterdam, The Netherlands), as described by the manufac-

turer. Empty pBABE vector was also used in HAFK293TV

cell infection as control. The medium was changed after

48 hours, and the culture supernatant containing the CXCR4

virus was collected on days 3 and 4. The supernatant was

filtered through a 0.45-mm Millex HV filter (Millipore, Billerica,

MA), mixed with 8 mg/ml polybrene, and added directly to

NB cell culture. Stable transfectants of CXCR4 were estab-

lished by puromycin (1.0 mg/ml) screening. CXCR4 expres-

sion was assessed by RT-PCR and Western blot analysis.

Polyclonal populations form both CXCR4 transfectants were

used for further in vitro and in vivo experiments.

Cell Proliferation Assay

Cell proliferation was measured with Alamar Blue assay

according to manufacturer’s protocol (Trek Diagnostics Sys-

tems, Inc., Cleveland, OH). Briefly, Alamar Blue was diluted

1:10 in the cell culture medium, and color change was

monitored after 3 hours. Colorimetric evaluation of cell pro-

liferation was performed using a SPECTRAmax Gemini

spectrophotometer (Molecular Devices Corporation, Sunny-

vale, CA), with 540 nm as excitation wavelength and 590 nm

as emission wavelength, and values were expressed as

relative fluorescence units.

Cell Adhesion Assay

Briefly, 24-well plates (Costar; Corning, Acton, MA) were

coated with rat tail collagen at 37jC for 1 hour, with some

wells left uncoated as negative controls. After washing the

plates with PBS, blocking buffer (0.5% BSA in DMEM) was

added at 37jC for 1 hour. A total of 1 � 105 cells/well was

plated in 250 ml of a-MEM plus 1mg/ml BSA in a 24-well plate

and incubated in 5% CO2 at 37jC for 0.5 hour. The plate was

then washed thrice with PBS. The percentage of adherent

cells was determined by Alamar Blue assay. Three indepen-

dent experiments were carried out in triplicate.

In Vitro Cell Invasion Assays

Cell invasion was assessed with the BD BioCoat (BD

Biosciences, San Jose, CA) tumor invasion system based on

the Boyden chamber principle using 8-mm pore positron emis-

sion tomography membrane inserts coated with a layer of

BD Matrigel Matrix (BD Biosciences). After detaching cells

with nonenzymatic cell dissociation solution (Sigma), NB cells

were incubated in suspension in a-MEM with 10% FBS for

2 hours and then seeded onto the extracellular matrix layer,

which had been previously rehydrated at room tempera-

ture for 2 hours. For chemokine-dependent invasion assay,

stromal cell–conditioned medium (SCM) was added to the

lower chamber as chemoattractant. Cells were incubated

for 48 hours at 37 jC in an incubator (5% CO2). Invaded cells

on the bottom of the insert membrane were fixed with 70%

ethanol and stained with hematoxylin. For quantification, the

average number of migrating cells per field was assessed

by counting 10 random fields under a microscope (original

magnification, �250).

Cytokine Antibody Array

Conditioned media for the liver, lung, and adrenal gland

were obtained as described above. a-MEM supplemented

with 10% FBS was used as negative control. Cytokine anti-

body array was performed with ChemiArray system (Mouse

Cytokine Antibody Array I; Chemicon International, Temec-

ula, CA) according to the manufacturer’s protocol. Briefly,

array membranes were blocked with 1� blocking buffer at

room temperature for 30 minutes and then incubated with

conditioned media at room temperature for 2 hours. After

washing thrice with 2 ml of wash buffer at room temperature,

biotin-conjugated anti-cytokine primary antibody was added

to each membrane and incubated at room temperature for

2 hours. Subsequently, membranes were washed thrice and

incubated with diluted HRP-conjugated streptavidin at room

temperature for 2 hours. Cytokines were detected by chemo-

luminescence reaction with exposure to Kodak X-mat film

(Estman Kodak Company, Rochester, NY) at room tem-

perature for 1 minute. Relative expression levels among dif-

ferent samples were compared to positive controls.

Mouse Xenograft Model

Both CXCR4 transfectants and control NUB-7 cells were

injected intravenously into NOD/SCID mice at 1 � 106 cells/

mouse. Mice were sacrificed after 3 or 4 weeks. For sub-

cutaneousgrowth, 1�106CXCR4–pBABE–transfectedSK-

N-BE(2) cells were injected subcutaneously, and mice were

sacrificed after 3 weeks. Studies of tumorigenicity, growth

rate, patterns of metastasis, tumor histology, immunocyto-

chemistry, and molecular characterizations were conducted.

Statistical Analysis

Data represent the mean ± standard error of the indi-

cated number of independent experiments. Differences be-

tween groups were assessed using a two-way analysis of
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variance, followed by two-tailed Student’s t test. P < .05 was

considered significant.

Results

Expression of Chemokine and Chemokine Receptors in NB

We chose three chemokines (CCL2, CCL3, and SDF-1)

and two chemokine receptors (CXCR4 and CCR7) and

performed RT-PCR to demonstrate their expression pro-

files in eight NB cell lines and one primary culture from a

multirelapse NB patient bone marrow metastasis sample,

designated NB12. As can been seen by RT-PCR (Figure 1A),

the various NB cell lines showed variable chemokine/re-

ceptor expression profiles. CCL-2 mRNA was detected only

in the GOTO and SK-N-BE(2) cell lines. We also identified

CCR7 and CCL3 mRNA from the multirelapsed NB sample

NB12, whereas it was absent from in all NB cell lines.

CXCR4 mRNA was detected in both primary tumor sample

NB12 and most NB cell lines, except for GOTO. After

identifying CXCR4 mRNA in those cell lines, we performed

Western blot analysis and confirmed CXCR4 protein ex-

pression in five NB cell lines (Figure 1B).

Modulation of CXCR4 Expression By Stromal Cells

After investigating the expression of CXCR4 in different

NB cell lines, we next addressed its potential regulatory

mechanism. From the specific metastatic pattern of NB,

we suspected that the tumor microenvironment, including

tumor stromal cells, could play an important role in regulat-

ing chemokine receptor expression. To mimic the micro-

environment of in vivo metastasis, stromal cells were

generated from the primary culture of different normal mice

organs, including the liver, lung, bone, bone marrow, and

adrenal gland. CXCR4 expression was investigated after

culturing the NUB-7 cell line with conditioned media from

different stromal cells. Interestingly, significant changes in

CXCR4 expression were observed (Figure 2) in different

SCM, suggesting that chemokine receptors could be modu-

lated by different stromal microenvironments. As shown by

RT-PCR (Figure 2A), Western blot analysis (Figure 2B), and

immunocytometry (Figure 2C), we observed a downregula-

tion of CXCR4 expression with adrenal SCM, whereas liver

SCM stimulated CXCR4 expression in NUB-7 cells. Taken

together with our studies in intravenous NOD-SCID mouse

metastatic model using NUB-7 and demonstrating that liver

metastasis presented before metastases to other sites, it is

likely that modulation of chemokine receptors is one of the

preliminary steps required for early NB cell migration. Regu-

lation of CXCR4 expression by different SCM was also

observed in two other NB cell lines LAN-5 and NBL-S. As

shown in Figure 2D, for the LAN-5 cell line, all SCM could

upregulate CXCR4 expression; for the NBL-S cell line, adre-

nal gland SCM could suppress CXCR4 expression and bone

SCM could upregulate CXCR4 expression.

CXCR4 Expression Is Regulated by IL-5 and IFN-c
Produced from Stromal Cells

To gain insight into the potential molecular mechanisms

underlying CXCR4 expression, we investigated the produc-

tion of cytokines from different stromal cells and their roles in

CXCR4 expression. Cytokine antibody array was performed

using SCM from different origins, including the adrenal gland,

liver, and lung. As shown in Figure 3A, among the 22 cyto-

kines screened, both IL-5 and IFN-g are released from liver,

adrenal gland, and lung stromal cells. However, liver stromal

cells released much less IL-5 compared to the adrenal gland

and lung, and the IFN-g/IL-5 ratio was significantly higher in

liver SCM than in lung and adrenal SCM.

This high IFN-g/IL-5 ratio released form liver SCM

prompted additional experiments in which CXCR4 expres-

sion was analyzed after exposing NUB-7 to different con-

centrations of recombinant IL-5 and IFN-g in vitro. Indeed,

CXCR4 expression was upregulated with only 0.1 ng/ml

Figure 1. Expression of chemokines and chemokine receptors in NB cell

lines. (A) RT-PCR showing different profiles of the chemokine/receptor

system in eight NB cell lines [NUB-7, SK-N-BE(2), NBL-S, LAN-5, IMR-32,

GOTO, SK-N-SH, and SK-N-BE(1)] and one primary NB tumor sample

(NB12). GAPDH was used as internal control. (B) CXCR4 expression shown

by Western blot analysis in five NB cell lines [NUB-7, SK-N-BE(2), NBL-S,

LAN-5, and IMR-32] relative to the a-tubulin loading control.
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IFN-g, and a dramatic decrease in CXCR4 expression was

noted with IL-5 treatment at a concentration of 1 ng/ml (Fig-

ure 3C), suggesting a possible explanation for the mecha-

nism by which liver SCM could stimulate CXCR4 expression.

Overexpression of CXCR4 in NB Cell Lines

To investigate the role of CXCR4 in NB development, we

overexpressed CXCR4 in two NB cell lines NUB-7 and SK-N-

BE(2). NUB-7 and SK-N-BE(2) cells are well characterized,

and both have relatively low levels of CXCR4. NB cells

were transfected with pBABE–CXCR4 or the empty vector

pBABE–Con, and cells were selected with puromycin and

cultured under these conditions for about 1 month. Both

RT-PCR (Figure 4A) and Western blot analysis (Figure 4B)

showed that CXCR4 levels were significantly upregulated in

CXCR4-overexpressed cells compared with pBABE–Con

and nontransfected cells.

Expression of CXCR4 Affects NB Cell Invasiveness

To establish the role of CXCR4 in NB behavior, we per-

formed a proliferation assaywith Alamar Blue, a cell adhesion

assay using rat tail collagen, and a cell migration assay in

Matrigel-coated transwell plates. We observed no significant

effect on the proliferation of NUB-7 cells after CXCR4 over-

expression (Figure 4C). Similarly, NUB-7 adhesion was not

significantly affected by either overexpressing CXCR4 or

blocking CXCR4–SDF-1 interaction by adding neutralizing

antibodies or AMD3100 to cell culture (Figure 4, D and E ).

In cell invasion assay, we used two different chemo-

attractants in the transwell invasion system, including liver

SCM and bone marrow SCM. As shown in Figure 4F, after

CXCR4 overexpression, a dramatic increase in cell migration

toward bone marrow SCM was observed, compared with

control NUB-7 cells (P < .05). In contrast, we observed no

significant change in cell migration toward liver SCM even

Figure 2. Chemokine receptors induced by stromal cells. Stromal cells were isolated from different mouse organs: adrenal gland, liver, bone marrow, bone, and

lung. (A) Expression of CXCR4 is affected by SCM. NUB-7 cells were incubated with conditioned media from different stromal cells for 48 hours under normal

culture conditions. Expression of CXCR4 was studied by RT-PCR. (B) Western blot analysis showing the distinct effects of stromal cells on CXCR4 expression in

NUB-7 cells. HeLa cell lysate was used as positive control. (C) Immunofluorescence staining of CXCR4 in liver SCM– induced NUB-7 cells and nontreated NUB-7

cells. Permeabilized CXCR4-overexpressing and control NUB-7 cells were incubated with anti-CXCR4 monoclonal antibody followed by Cy3-labeled (red)

secondary antibody. Immunoreactive CXCR4 was located in the cytosol and membrane of those cells. (D) Regulation of CXCR4 expression by different SCM in two

other NB cell lines, LAN-5 and NBL-S. Expression of CXCR4 was studied by RT-PCR.
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after CXCR4 overexpression, suggesting preferential mi-

gration toward the bone marrow. To determine the chemo-

attractant driving CXCR4-mediated NB cell migration, we

assessed the SDF-1 level in conditioned media from liver or

bone marrow stromal cells. As shown in Figure 4G, using

ELISA, we demonstrated a significantly higher SDF-1a level

in bone marrow SCM (1206.93 ± 155.24 pg/ml) than in liver

SCM (275.61 ± 115.18 pg/ml; P < .01).

CXCR4 Expression Regulates NB Metastasis In Vivo

To gather further support for the role of CXCR4 in vivo,

two mouse xenograft models were used: NB cells injected

subcutaneously or intravenously to NOD/SCID mice. In the

subcutaneous model, both CXCR4-expressing NUB-7 cells

and control cells formed localized tumors with no significant

differences in tumor size (data not shown). In the intra-

venous model, mice were injected with 1 � 106 CXCR4-

Figure 3. (A) Cytokine antibody array with SCM from the adrenal gland, liver, and lung. Twenty-two cytokines were screened in three SCM. A conditioned medium

was obtained as described above. a-MEM supplied with 10% BS was used as negative control. Array was performed with the ChemiArray system according to the

manufacturer’s protocol. (B) The map of mouse antibody array I can be used to identify individual cytokines. (C) CXCR4 expression is regulated by recombinant IL-

5 and IFN-c in NUB-7 cells. NUB-7 cells were cultured for 48 hours with different doses of mouse recombinant IL-5 and IFN-c (0, 0.1, and 1 ng/ml). CXCR4

expression was assessed by Western blot analysis.
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Figure 4. Overexpression of CXCR4 in NB cell lines. For CXCR4 overexpression, both NUB-7 and SK-N-BE(2) cells were infected by CXCR4–pBABE. Empty

pBABE vector was used as control. (A) RT-PCR showing the expression level of CXCR4 after CXCR4 overexpression in the NUB-7 cell line. (B) Western blot

analysis confirmed the overexpression of CXCR4 in both NUB-7 and SK-N-BE(2) transfectants. Blots were scanned and analyzed using ImageJ software (The

National Institutes of Health [NIH], Bethesda, MD). (C) Effect of CXCR4 overexpression on NUB-7 cell proliferation. Cell proliferation was measured with Alamar

Blue assay after 4 days. All experiments were carried out in triplicate. (D and E) Effect of CXCR4 expression on NB cell adhesion. Cell adhesion assay was

performed using NUB-7 cells and control cells (C). NUB-7 cells were also treated with neutralizing antibody to CXCR4 (5 �g/ml) or specific CXCR4 inhibitor

AMD3100 (1 �M) for 10 minutes at normal culture conditions. Cell adhesion assay was performed as described in the Materials and Methods section. (F) Effect

of CXCR4 expression on NB cell invasiveness. Transwell cell invasion assay was performed using liver or bone marrow SCM as chemoattractant. Invaded cells on

the bottom of the insert membrane were fixed with 70% ethanol and stained with hematoxylin. For quantification, the average number of migrating cells per field

was assessed by counting 10 random fields under a microscope (original magnification, �250). Results are representative of three separate experiments. *P < .05,

compared with each control. (G) Release of SDF-1a from stromal cells. Liver and adrenal gland SCM were obtain as described above. The measurement of SDF-1a
was carried out using ELISA kits (R&D Systems), according to the manufacturer’s instructions. a-MEM supplemented with 10% FBS was used as negative control.
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overexpressing or control NUB-7 cells. After 3 weeks, liver,

kidney, and lung metastases were observed in both groups.

However, only one of seven mice in the control group devel-

oped bone marrow metastasis, whereas six of seven mice in

the NUB-7–CXCR4 group had bone marrow metastasis

(Table 2 and Figure 5A). Thus, CXCR4 overexpression en-

hanced NB cell migration toward the bone marrow. Strik-

ingly, CXCR4-overexpressing SK-N-BE(2) cells and control

cells also produced similar size subcutaneous tumors;

however, extensive liver, kidney, and bone marrow metas-

tases developed only in the CXCR4 overexpression group

(Figure 5, B and C). All metastases were confirmed by

histologic analysis (data not shown). These results suggest

that the expression of CXCR4 could also stimulate NB

metastasis from a primary tumor site.

Discussion

It is believed that chemokines and chemokine receptors

form a complicated network in tumor progression [20]. Both

their expression profiles and regulatory mechanisms have

yet to be completely elucidated. To establish the role of the

chemokine system in NB metastasis, we first profiled five

chemokines and receptors (CCL2, CCL3, SDF-1, CXCR4,

and CCR7) and demonstrated differential expression in eight

NB cell lines and one primary culture from an NB patient

sample, NB12. These five chemokines and receptors have

been reported frequently for their potential role in the metas-

tasis of other tumor types to the bone marrow, liver, lymph

node, bone, or skin [21–25]—all common metastatic sites

in NB patients. Our studies demonstrated that CXCR4 is

expressed in most NB cell lines and in the primary tumor

sample NB12, which points to its potential involvement in NB

metastasis. Consistent with our finding, CXCR4 expression

was reported in other NB cell lines (including SH-SY5Y and

SK-N-MC), and CXCR4 was proven to be functional be-

cause it could bind its ligand SDF-1 on the cell surface, in-

ducing a rapid and transient intracellular calcium increase in

SK-N-SH cells [26].

Our key findings showed that in NB cells, the chemokine/

receptor system is a dynamic system that can be dynamically

modulated. A similar phenomenon was observed in dendritic

cell (DC) maturation where circulating DC precursors typi-

cally express just two chemokine receptors, CCR2 and

CXCR4.On entering tissues and differentiating into immature

DC, they express CCR1, CCR2, CCR5, CCR6, CXCR1,

CXCR2, and CXCR4. As these cells mature, expression of

these receptors is gradually lost, whereas expression of a

single lymphoid chemokine receptor CCR7 is rapidly induced

[27,28]. Studies in NB and other cancer types indicate that

different cell lines express different levels of chemokine

receptors. Even for the same cell line, different independent

studies demonstrated different levels [9,18]. All these find-

ings and our results suggest that the expression of chemo-

kine receptors could change in response to changes in their

microenvironments, especially during different stages in

NB metastasis.

Although it seems clear that some chemokine receptors,

especially CXCR4, are often highly expressed in malignant

tumors [9], the mechanism responsible for its upregulation

has not been completely elucidated. Tumor–stromal inter-

action could be a potential mechanism. Tumor–stromal

interaction is a very complicated process in tumor progres-

sion. Most studies on stromal cells have focused on integrins,

growth factors, and cytokines [29–31]. In this study, we ex-

plored tumor–stromal interaction through the chemokine/

receptor system and demonstrated for the first time that, in

NB, different stromata have divergent effects on the expres-

sion of chemokine receptors. Another important finding in

this study is that, in NB, the divergent effects of different stro-

mata on chemokine receptor expression are achieved by the

release of IL-5 and IFN-g at differential levels by stromal cells,

which indicates that tumor–stromal interaction could regu-

late the movement of NB cells to distant sites by modulating

the chemokine/receptor system. It has been demonstrated

that CXCR4 expression can be regulated positively by cyto-

kines such as TGF-b1, VEGF, and bFGF, and can be regu-

lated negatively by cytokines such as IL-5 and IFN-a in

leukocytes, endothelial cells, and neural cells [32–36]. It

was also demonstrated that hypoxia strongly affects the

chemokine system in macrophages [37]. Human macro-

phages exposed to low-oxygen conditions do not migrate in

response to CCL12 in hypoxic conditions [38]. By contrast,

CXCR4 expression and function in myeloid populations are

strongly increased through the activation of hypoxia-inducible

factor-1a [39]. There are very limited published data on cyto-

kine concentration in tissue microenvironments. Hogan and

Landreth [40] detected the production of IL-5 in bone marrow

stromal cells. It was also demonstrated that local overexpres-

sion of IFN-g in stromal cells was much more potent than the

exogenous addition of soluble cytokine to culture media [41].

Our in vitro studies demonstrated the regulation of CXCR4

expression by IL-5 and IFN-g at the nanomolar level. It is

therefore conceivable that physiological significant effects

could be achieved in in vivo microenvironments.

Chemokines and their receptors constitute a key chemo-

attractant mechanism used by both normal and tumor cells

[1–5]. So far, limited studies have been carried out on the

role of CXCR4 in NB metastasis, and unexplained inconsis-

tency was observed among results from different studies

[18,19,42]. We suspected that this discrepancy could result

Table 2. Dissemination of NUB-7 in NOD/SCID Mice after Intravenous

Injection of CXCR4-Overexpressing Cells.

Group n Lung

[n (%)]

Liver

[n (%)]

Kidney

[n (%)]

Bone Marrow

[n (%)]

NUB-7–pBABE 7 2 (28.6) 7 (100) 6 (85.7) 1 (14.3)

NUB-7–CXCR4 7 3 (42.9) 7 (100) 6 (85.7) 6 (85.7)

CXCR4 was overexpressed in NUB-7 cells. CXCR4-overexpressing NUB-7

cells (1 � 106; NUB-7–CXCR4) and vector control cells (NUB-7–pBABE)

were injected intravenously to NOD/SCID mice. Three weeks after injection,

the mice were sacrificed. Metastatic site formation was determined histo-

logically after hematoxylin –eosin staining. For each organ site, the number of

animals with disseminated NB is indicated, and the dissemination frequency

is shown in parentheses.
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from the dynamic change of CXCR4 expression under differ-

ent culture environments and relatively low levels of CXCR4

expression in NB cell culture. To observe a significant effect of

CXCR4 in NB development, the expression level of CXCR4

has to be upregulated. Because the bone marrow is a key

producing site for the CXCR4 ligand SDF-1, it is reasonable

to propose that the release of SDF-1 would attract NB cells

to form a secondary tumor at this site. Clinically, the most

common location of NB metastases is the bone marrow

(70%), but limited bone marrow metastasis can be achieved

in current animal models, even with a highly malignant cell

line derived from a bone marrow metastatic site [43]. We

suspected that this altered metastatic pattern in animal

models could result from a reduced or an even totally si-

lenced expression of certain chemokine receptor(s) in NB cell

lines due to the change in microenvironment. Indeed, from

Figure 5. CXCR4 expression regulates NB metastasis in a mouse xenograft model. (A) Both CXCR4-overexpressing (NUB-7–CXCR4) and control NUB-7 cells

(NUB-7–pBABE) were injected intravenously to NOD/SCID mice at a dose of 1 � 106 cells. Mice were euthanized after 3 weeks. Femurs were decalcified, and

processed tissue sections were stained with hematoxylin –eosin. Disseminated metastasis was observed in the liver, kidney, and lung (detailed in Table 2).

Extensive bone marrow metastasis was observed after CXCR4 overexpression. Photomicrographs of representative bone marrow sections are shown (original

magnification, �200). (B) CXCR4-overexpressing SK-N-BE(2) cells (1 � 106; SK-N-BE(2)–CXCR4) and control SK-N-BE(2) cells (SK-N-BE(2) –PBABE) were

injected subcutaneously, with four mice in each group. After sacrificing the mice at 3 weeks, images of primary tumor, liver metastasis, and kidney metastasis were

taken under bright field. Figures shown are representative of tissues from two groups. Liver and kidney metastases could only be observed in the CXCR4-

overexpressing group pointed by arrows. (C) In the subcutaneous model, the CXCR4-overexpressing group (SK-N-BE(2) –CXCR4) also showed bone marrow

metastasis from femur sections (original magnification, �200).
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the chemokine profile shown in Figure 1A, the multirelapse

patient sample NB12 has much higher levels of CXCR4,

CCR7, and CCL3 compared to all NB cell lines.

To investigate this possibility, we overexpressed CXCR4

in the NB cell lines NUB-7 and SK-N-BE(2), and found that

overexpression of CXCR4 promoted NB cell migration selec-

tively toward bone marrow SCM in vitro. In a mouse xeno-

graft model, we further demonstrated that bone marrow

metastasis could be achieved successfully by CXCR4-

overexpressed NB cells. These data collectively indicate that

targeted bone marrow metastasis could be enhanced by the

overexpression of CXCR4. We believe that the expression

of CXCR4 could regulate the homing process part of meta-

static cascade. In addition, CXCR4 expression could also be

involved in some other steps for NB metastasis. Because

different NB cells have various potentials to form metastasis

in a subcutaneous xenograft model, we used SK-N-BE(2)

cells in our subcutaneous model. Unexpectedly, we detected

disseminated metastasis in addition to bone marrow metas-

tasis from subcutaneously growing CXCR4-overexpressing

SK-N-BE(2) cells. Taken together with some recent studies

suggesting the regulation of angiogenesis byCXCR4 [44], we

suggest that the dissemination of CXCR4-overexpressed

SK-N-BE(2) cells from primary tumors could result from

increased angiogenesis or local invasiveness.

Our studies make it apparent that CXCR4 expression can

be upregulated by liver stromal cells, and this upregulation

could stimulate NB metastasis toward the bone marrow,

which then suggests that tissue modulation of chemokine

receptors could be a critical step before NB metastasis. Our

data also showed that adrenal SCM dramatically suppressed

CXCR4 expression in NUB-7 cells. We propose that primary

NB cells may have a limited expression of CXCR4 while

residing in the adrenal gland. Only after the normal adrenal

gland had been compromised by tumor growth could CXCR4

expression recover and thereby facilitate tumor cell migration

toward other SDF-1–expressing organs, such as the bone

marrow. Consequently, after the bone marrow had been

replaced, tumor cells could again migrate to another meta-

static site. Thus, NB tumor cells might be chemoattracted

to new sites as older ones become less conducive to support-

ing tumor growth—a process governed potentially by chemo-

kine/receptor activity. Taken together, we suggest that, to

stimulate tumor cell migration toward favorable metastatic

sites, the expression of the chemokine system has to be

modulated accordingly. To sum up, our observations give

credence to the earlier ‘‘seed-and-soil’’ hypothesis [45] and

invoke the chemokine/receptor system as a dynamic sys-

tem that is modulated in different microenvironments and

targets NB cells to different organs according to specific

chemokine/receptor expression profiles.

In addition to CXCR4 and SDF-1, other chemokine and

cognate receptors could also take part in NB metastasis.

The expression of CCR7 and CCR10 in melanoma cells

was linked to the expression of cognate ligands at the two

major sites of metastasis: skin and lymph nodes [46].

Another chemokine LARC/CCL20 is constitutively ex-

pressed in the liver, and this ligand interacts with CCR6.

The latter receptor is commonly overexpressed in colon,

thyroid, and ovarian carcinomas, which may contribute to

the commonly observed metastases of these tumors to the

liver [47]. In additional studies, we also found the expression

of CCR6 in some NB cell lines (unpublished observations),

which may explain why the liver is one of the most frequent

metastatic sites in both patients and xenograft models.

Interestingly, the primary clinical sample NB12 expressed

all three receptors, including CXCR4, CCR7, and CCR6,

suggesting perhaps a greater degree of heterogeneity in

comparison to cell lines that are more phenotypically homo-

geneous. Whether primary NB consists of tumor cells with

multiple metastatic phenotypes is an important question and

has many ramifications. Further studies are needed to

address the link between chemokine/receptor profile and

clinical progression.

In conclusion, the chemokine/receptor profile generated

for NB in the present study provides a definite link between

NB metastasis and expression of the chemokine/receptor

system. In addition, by modulating chemokine receptor ex-

pression, we provide a novel means for manipulating and

enhancing NB tumor cell invasiveness and metastasis and,

thereby, the means to develop site-directed NB metastasis

models. Because such models would reflect NB progression

in patients, they could mimic tumor behavior more accurately

and would constitute better models to evaluate new thera-

peutics. Clinically, the demonstration of a central role for the

chemokine/receptor system in NB metastasis also provides

an alternative target for NB therapy by blocking chemokine/

receptor function. In addition, if it were possible to demon-

strate a relationship between chemokine (or receptor) ex-

pression profiles and different stages of NB, this could lead

to alternative prognostic makers for NB and a strategy to en-

hance both diagnostic and therapeutic modalities.
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